If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x=33
We move all terms to the left:
3x^2+30x-(33)=0
a = 3; b = 30; c = -33;
Δ = b2-4ac
Δ = 302-4·3·(-33)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-36}{2*3}=\frac{-66}{6} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+36}{2*3}=\frac{6}{6} =1 $
| 16.5=-2.5+8(a+3.5 | | -4k+(5k-6=-3k-39 | | 0=–0.05(30^2 –26x –120) | | 12b(2)-27=0 | | 1/2(x-12)=29+4x | | 1/2y+4=1/2y+8 | | 19-x-3;x=9 | | 20t+160=500 | | 54=a=63 | | 3x(2)-9x-30=0 | | 10q-9=6+5q | | Z=(2+5j)(3+4j) | | 12=q6+14 | | 15-7b+2b;b=2 | | x-3.1=3.9 | | 7(x+2)=x-28 | | 10+4f=6f−10 | | x6=−6 | | –6=v/4−10 | | –6=v/4− 10 | | 8x-29+6x-11=180 | | 3y-5y(2y-6)=8y-2(9y-6) | | 0.5(10x+2)=1+5x | | 3y+18=6-3y | | 5-(-3x)=16 | | x+52/4=83/5 | | 2(g+-6)=-4 | | 26/4=x/7 | | 3y+18=6−3y | | 2n+7-3;n=8 | | 5.70c+0.30c-36=72 | | (-3x)−5=16 |